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ABSTRACT

Seasonal forecast skill of the basinwide and regional tropical cyclone (TC) activity in an experimental

coupled prediction system based on the ECMWF System 4 is assessed. As part of a collaboration between the

Center for Ocean–Land–Atmosphere Studies (COLA) and the ECMWF called Project Minerva, the system

is integrated at the atmospheric horizontal spectral resolutions of T319, T639, and T1279. Seven-month

hindcasts starting from 1 May for the years 1980–2011 are produced at all three resolutions with at least 15

ensemble members. TheMinerva system demonstrates statistically significant skill for retrospective forecasts

of TC frequency and accumulated cyclone energy (ACE) in the North Atlantic (NA), eastern North Pacific

(EP), and western North Pacific.While the highest scores overall are achieved in the North Pacific, the skill in

the NA appears to be limited by an overly strong influence of the tropical Pacific variability. Higher model

resolution improves skill scores for the ACE and, to a lesser extent, the TC frequency, even though the

influence of large-scale climate variations on these TC activity measures is largely independent of resolution

changes. The biggest gain occurs in transition from T319 to T639. Significant skill in regional TC forecasts is

achieved over broad areas of the Northern Hemisphere. The highest-resolution hindcasts exhibit additional

locations with skill in the NA and EP, including land-adjacent areas. The feasibility of regional intensity

forecasts is assessed. In the presence of the coupled model biases, the benefits of high resolution for seasonal

TC forecasting may be underestimated.

1. Introduction

Skillful seasonal forecasting of tropical cyclone (TC)

activity continues to be a scientific challenge with im-

plications for society and economies. Seasonal pre-

diction is predicated on the fact that signals of oceanic

origin [sea surface temperature (SST), sea ice, etc.],

changes in radiative forcing (solar, greenhouse gases,

aerosols, etc.), and land surface conditions (e.g., soil

moisture) have long time scales (seasons and years) and

may exhibit predictable evolution. This in turn can sig-

nificantly influence the atmospheric circulation and

provide a certain degree of predictability on the one-

season to 1-yr time scales (e.g., Shukla et al. 2000).

Predictability of the seasonal mean TC activity in par-

ticular has its origin in the high dependence of TC sta-

tistics on the atmospheric and oceanic conditions, such

as SST and vertical wind shear (VWS) (Gray 1979). In

the tropics, changes in the large-scale circulation are

strongly related to changes in the SST distribution, such

as El Niño–Southern Oscillation (ENSO), which is

considered to be predictable on seasonal time scales

(e.g., Kim et al. 2012; MacLachlan et al. 2015). From this

perspective, seasonal TC activity may be considered a

stochastic process modulated by the seasonal climatic

conditions.
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The observed relationships between large-scale cli-

mate variability and TC statistics have led to the de-

velopment of the first seasonal forecasts of TC activity,

which are based on statistical methods (see review by

Camargo et al. 2010). Such forecasts continue to be is-

sued operationally for the North Atlantic (NA), eastern

North Pacific (EP), western North Pacific (WP), and

Australian regions by a number of governmental

agencies, academic institutions, and private companies.

As a result of model development, global atmospheric

general circulation models (AGCMs) are becoming in-

creasingly skillful at explicitly simulating TCs, including

their genesis and life cycle (e.g., Goerss et al. 2004;

Halperin et al. 2013; Met Office 2014; Roberts et al.

2015). Consequently, seasonal prediction systems based

on such models have also become an attractive tool for

TC forecasting. Using high-resolution AGCMs forced

by predicted or persistent SST anomalies (SSTAs) is one

example of this approach (e.g., LaRow et al. 2010; Zhao

et al. 2010; Chen and Lin 2011, 2013). For instance, Chen

and Lin (2011, 2013) have demonstrated high skill in

retrospective seasonal forecasts of theNATC frequency

during 1990–2010 using a 25-km AGCM, with less suc-

cess in the North Pacific. They conclude that the as-

sumption of persistent SSTAs may be less applicable to

theWP and not adequate for the 2011–13 seasons (Chen

and Lin 2014). The authors also suggest that further

improvement of the TC seasonal predictions is partly

dependent on the improved model resolution.

Dynamical seasonal forecasts of TC activity based on

coupled ocean–atmosphere general circulation models

(CGCMs) have been investigated since the late 1990s and

issued operationally at the European Centre for Medium-

Range Weather Forecasts (ECMWF) beginning in 2001

(Vitart and Stockdale 2001). These earlier and many-

present operational seasonal prediction systems employ

relatively coarse-resolutionAGCMs to predict the seasonal

evolution of the large-scale climate. Although low-

resolution models are capable of simulating TC-type vor-

tices with some realistic features (see review by Walsh

2008), there are known deficiencies in a number of clima-

tological characteristics such as genesis patterns, mean TC

frequency, tracks, structure, and intensity distribution (e.g.,

Manganello et al. 2012; Camargo 2013; Strachan et al. 2013;

Roberts et al. 2015). Yet, interannual variability of the ba-

sinwide, seasonally aggregated TC activity metrics like TC

frequency and accumulated cyclone energy (ACE)1 can be

quite realistic in suchmodels provided that the variability of

the large-scale circulation iswell simulated (e.g.,Vitart et al.

1997, 1999). The forecast skill of these TC activitymeasures

is therefore found to be competitive to statistical forecasts,

particularly when a multimodel ensemble technique is ap-

plied, and is dependent on the skill of forecasts of the large-

scale circulation (Vitart and Stockdale 2001; Vitart 2006;

Vitart et al. 2007). While the consensus is that high model

resolution is essential for the realistic simulation of TCs,

there have nonetheless been very few studies that have

directly examined this influence on the skill of the seasonal

TC activity forecasts. Recent work by Vecchi et al. (2014)

and Camp et al. (2015) has demonstrated that reasonably

skillful predictions of regional, in addition to basinwide,

seasonal TC activity can be achieved using high-resolution

coupled climate models. A question arises whether these

regional TC forecasts would also benefit from the system-

atic increase in the model resolution.

In this paper, we evaluate the performance of retro-

spective forecasts of the seasonal mean TC activity, and

overall TC climatology, in an experimental high-

resolution seasonal prediction system similar to the

ECMWF System 4 (hereafter System 4; Molteni et al.

2011). As part of an international collaboration called

Project Minerva (Zhu et al. 2015), the system is in-

tegrated at atmospheric horizontal resolutions ranging

from T319 to T639 and T1279. The coarsest resolution

(T319; ;62-km grid) is already higher than in most

current operational seasonal prediction systems (e.g.,

Molteni et al. 2011; Saha et al. 2014). The finest resolu-

tion (T1279; ;16-km grid) is presently used operation-

ally at the ECMWF for (uncoupled) medium-range

weather forecasts. We examine whether further in-

creasing atmospheric resolution beyond the ‘‘TC per-

mitting’’ range (20–100-km grid; e.g., Zhao and Held

2012) leads to an improved skill of the basinwide and

regional TC activity hindcasts. The influence of the en-

semble size on the forecast skill is also addressed. To

evaluate the impact of the large-scale climate on the

quality of these hindcasts, we assess the skill of the rel-

evant basin-specific climatic conditions and their re-

lationship with the TC activity hindcasts compared to

observations. The potential influence of the coupled-

model biases on these connections is discussed.

The paper is organized as follows. Section 2 contains a

description of the modeling system and numerical experi-

ments, methodologies of identifying and tracking TCs, and

observational data used in the study. The climatology ofTC

formation and tracks and intensity distributions are briefly

described in section 3.Analysis of the seasonal forecast skill

of the basinwide and regional TC activity is presented in

sections 4 and 5, respectively.A summary of the results and

some concluding remarks are given in section 6.

1 ACE is an integral measure of the TC activity and is computed

by integrating the squared peak wind speed at each time interval

along a track and accumulating over all tracks in a season (see Bell

et al. 2000).
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2. Methodology

a. Modeling system and experimental setup

Project Minerva employs a coupled operational long-

range prediction system based on the System 4 (Molteni

et al. 2011). The two modeling systems have very similar

configurations in terms of the ocean model, coupling,

initialization, and ensemble perturbation generation

methods. The ocean model is Nucleus for European

Modelling of the Ocean (NEMO; Madec 2008), version

3.0, on the ORCA1 grid, which has a horizontal resolu-

tion of about 18 (with equatorial refinement of 1/38) and 42
levels in the vertical. The ocean–atmosphere coupling is

implemented from the start and occurs with a 3-h cou-

pling frequency. The unperturbed initial conditions for

the atmosphere come from the ECMWF interim re-

analysis (ERA-Interim; Dee et al. 2011) and Ocean Re-

analysis System 4 (ORA-S4) for the ocean. Ozone initial

conditions are taken from the seasonally varying clima-

tology. Stratospheric volcanic aerosols are included; time

variation of greenhouse gases is specified as well. More

details about System 4, its initialization, and its ensemble

generation can be found in Molteni et al. (2011).

The main differences between System 4 and the Mi-

nerva forecasting system are in their component

AGCMs. Both use the ECMWF Integrated Forecast

System (IFS; ECMWF 2015), cycle 36r4 at spectral T255

horizontal resolution in System 4, and cycle 38r1 at three

different spectral horizontal resolutions in Project Mi-

nerva. These resolutions are T319, T639, and T1279,

corresponding approximately to 62-, 31-, and 16-km grid

spacing, respectively. The ECMWF IFS is a spectral,

semi-implicit, semi-Lagrangian hydrostatic model with

91 levels in the vertical and a model top in the meso-

sphere at 0.01 hPa.

Our study is based on a subset of Minerva integ-

rations, which includes 7-month hindcasts started from

1May initial conditions during 1980–2011 and consisting

of 15 ensemble members for the T1279 and T639 con-

figurations and 51 members for the T319. These exper-

iments are respectively referred to as T1279, T639, and

T319 hereafter. When comparing results, we use all 51

ensemble members of T319, unless otherwise noted.

Upper-air data for all model configurations are con-

verted to the common T319 resolution prior to the

analysis. An evaluation of the modeling system’s ability

to represent the climatology is in the supplementary

material (see Fig. S1).

b. Identification and tracking of tropical cyclones

Predicted storms are identified explicitly in the

model data using an objective feature-tracking meth-

odology. The initial TC identification and tracking is

similar to that used in Bengtsson et al. (2007) and is

based on the tracking algorithm of Hodges (1994, 1995,

1999). Vortices are detected in the Northern Hemi-

sphere (NH) as maxima in the 6-hourly relative vor-

ticity field averaged over 850-, 700-, and 600-hPa levels,

with values greater than 5 3 1026 s21 (at a spectral

horizontal resolution of T63). Vertical averaging of

vorticity is found to produce more coherent tracks and

to capture more of the life cycle of storms that may

include an African easterly wave (AEW) precursor,

compared to the tracking based on a single-level vor-

ticity field (Serra et al. 2010). A posttracking lifetime

filter of 2 days is employed. The TC identification cri-

teria (see Table 1) are applied to the raw tracks to

separate the simulated TCs from other synoptic sys-

tems. As a result, model storms tend to include both

earlier and later stages of a life cycle than the observed

TABLE 1. TC identification criteria.

Criteria

Horizontal resolution of the Minerva forecasting system

T1279 T639 T319

1) Surface (10m) wind speed threshold (m s21;

intensity threshold).

15.4a 14.4a,b 13.4a,b

2) Difference in vorticity between 850 and 250 hPa

(a warm core condition).c
Larger than zero for all resolutions.

3) Vorticity max at each level (6 levels) between 850

and 250 hPa (a coherent vertical structure condition).c
Applied to all resolutions.

4) Criteria 1–3 are achieved for four consecutive time

steps (24 h).

Applied to all resolutions.

5) Cyclogenesis (first identification) occurs between

08–208N over land and 08–308N over oceans.

Applied to all resolutions.

a Observed tropical storm threshold for 10-min MSW is used.
b Surface wind speed threshold is further adjusted for model resolution based on Fig. 2 in Walsh et al. (2007). Values derived from

a selection of Hurricane Research Division wind analysis are used.
c Vorticity is truncated at spectral T319 horizontal resolution (N160) common to all resolutions.
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storms. Further details of the TC identification and

tracking can be found in Manganello et al. (2012).

An additional filter is used to remove spurious re-

gionally confined storms in the Caribbean Sea off the

northern tip of South America, which are endemic at

coarser resolutions (see section 3). This feature is also

found in other versions of the IFS at low resolutions and

appears to be a consequence of the insufficiently re-

solved sharp orography in the northern Venezuelan

highlands (see Manganello et al. 2012). An application

of this filter results in a significantly improved hindcast

skill in the NA for the T319 model with no major

changes for the T639 and T1279.

Our analysis is performed for the NH only, and the

results are reported for the NA, EP, and WP basins, as

the skill for the north Indian Ocean is found to be quite

low. A storm is assigned to a particular basin if it reaches

its peak intensity there. For instance, it may originate as

an easterly wave over the Caribbean Sea and propagate

into the EP (e.g., Serra et al. 2010). If it reaches its

lifetime maximum intensity there it is classified as an EP

TC. The EP TCs also include the central North Pacific

storms.

The TC activity is computed for the May–November

(MJJASON) season, which encompasses the whole pe-

riod of integration and also represents the bulk of the

annual TC activity in the NA, EP, and WP basins. This

period includes the range of deterministic atmospheric

prediction (about 2 weeks) when the initialized atmo-

spheric state can directly affect the prediction. However,

we do not believe that the inclusion of the full month of

May significantly affects the seasonal mean results since

this is a month of very weak TC activity in all the basins

reported.

c. Observational and reanalysis data

To compare the simulated TCs with those observed,

we use data from the International Best Track Archive

for Climate Stewardship (IBTrACS, version v02r01;

Knapp et al. 2010). IBTrACS uses 10-min average wind

speed at 10-m elevation for the maximum sustained

wind (MSW) estimate, which closely corresponds to the

model definition of MSW (see Table 1). We also use the

same conversion coefficient between 1- and 10-min

winds equal to 0.88 (see Knapp et al. 2010) to adjust

TC thresholds. Thus, the ‘‘tropical storm’’ threshold of

17.5m s21 (34 kt; 1 kt’ 0.51ms21) defined for the 1-min

MSW becomes 15.4m s21 (30 kt) for the 10-min MSW.

For the direct comparison with model-simulated tracks,

IBTrACS data are processed by applying criteria 1 and 4

of Table 1.

Surface fields and pressure-level analysis from the

ERA-Interim for the period 1980–2011 are used to

compute observational estimates of the atmospheric and

SST-based indices in section 4.

3. Predicted TC climatology

A brief review of the simulated TC climatology is

given below with the purpose of demonstrating the

overall level of skill, its dependence on model resolu-

tion, and its role as a potential aid in diagnosing the skill

of seasonal forecasts in later sections.

In the NA the seasonal mean TC frequency is quite

realistic in all Minerva hindcasts (Table 2), contrary to

some recent studies (Strachan et al. 2013; MacLachlan

et al. 2015; Roberts et al. 2015). There is a clear increase

of the TC frequency with the resolution [as has been

reported previously in, e.g., Manganello et al. (2012),

Strachan et al. (2013), and Roberts et al. (2015)] where

T639 and T1279 attain values very close to observations.

This is largely a result of an enhanced eastern main

development region (MDR; 7.58–22.58N, 808–208W)

genesis in the higher-resolution models (Figs. 1a–d),

which is also found in the above studies, and could be

partly due to better tracking of the AEWs with the new

tracking procedure (section 2b). In contrast, TC genesis

in the western MDR and the Caribbean Sea is weaker

than in observations (and the latter center is misplaced

farther southeast from its observed location in T639 and

T319, as mentioned in section 2b). These biases may be

related to suppressed convective activity in the two re-

gions (not shown). Although poor genesis in the Ca-

ribbean Sea and the Gulf of Mexico is common among

recent models (e.g., Strazzo et al. 2013), the latter center

is simulated quite well in all Minerva hindcasts. The

overall distribution of tracks is realistic, albeit the track

TABLE 2. Climatological means of the TC frequency and the

ACE for the MJJASON season of 1980–2011 for IBTrACS (OBS)

and Minerva forecasts. Differences between the model results and

observations that are statistically significant at the 95% confidence

level using a two-sided Student’s t test are shown in boldface.

Degrees of freedom are computed taking into account serial cor-

relation in the time series using Bretherton et al. (1999) formula for

effective sample size of order 1.

NA EP WP

TC frequency

OBS 9.8 15.6 22.5

T1279 10.2 10.2 26.5

T639 9.9 10.7 28.7

T319 9.0 11.1 30.1

ACE (104 kt2)

OBS 86.2 119.1 206.4

T1279 68.8 65.2 157.6

T639 49.1 49.9 136.1

T319 27.0 37.7 104.1

1182 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/15/21 12:16 PM UTC



density is too low in the MDR in T319 and somewhat

overpredicted in T1279 and T639 both in the MDR and

the western subtropical NA (Figs. 1e–h).

Compared to the NA, the seasonal mean TC fre-

quency is systematically under- and overpredicted in

the EP and WP, respectively (Table 2). In these two

basins, the climatological mean TC count also de-

creases with an increase in the model resolution. In

the EP, this is mainly due to more storms originating

from easterly waves in the Caribbean Sea at coarser

FIG. 1. NA (left) genesis and (right) track densities as number density per season per unit

area equivalent to a 58 spherical cap for (a),(e) IBTrACS (OBS) and Minerva hindcasts at

(b),(f) T1279; (c),(g) T639; and (d),(h) T319 resolutions based on MJJASON of 1980–2011.
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resolutions (Fig. 2), likely related to spurious wave ac-

tivity off the northern tip of South America (see section

2b). The main center of the EP cyclogenesis off the

Mexican Pacific coast is equally underrepresented in all

Minerva hindcasts. In the WP, the maximum concen-

tration of cyclogenesis occurs in the Philippine Sea and

the South China Sea at lower resolutions, as opposed to

the southeastern part of the basin in the observations

(Figs. 3a–d). There are also more central Pacific storms

in Minerva hindcasts. These two biases appear to be

related to the intertropical convergence zone (ITCZ)

errors (see the supplementary material), likely as a re-

sult of a significant cold bias in the cold tongue region

(see Zhu et al. 2015). Overall, the WP seasonal TC

count, genesis, and track densities (Figs. 3e–h) are best

represented at the highest resolution, although there

is still insufficient genesis close to the equator in the

T1279 model.

The climatological mean ACE is significantly lower

than the observed in all three basins and at all resolu-

tions, except for the NA at T1279 (Table 2). This is

largely a consequence of the model’s low skill in simu-

lating the most intense storms in terms of the 10-m wind

speed even at the highest T1279 resolution. The simu-

lated frequency distributions of the lifetime maximum

10-mwind speed do not reproduce secondary peaks (not

shown), which is in contrast with our previous analyses

of the earlier IFS cycle at T1279 forced by the observed

SST and sea ice (Manganello et al. 2012; Manganello

et al. 2014a). (As a side note, the northwestern bias in

the WP genesis in Minerva precludes the development

of the most intense typhoons, which primarily form in

FIG. 2. As in Fig. 1, but for the EP.
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the southeastern part of the domain.) Overall, the T1279

intensity distributions are realistic up to wind speeds

corresponding to Saffir–Simpson category 3 hurricanes

in the NA and category 2 storms in the EP andWP. The

strongest model TCs have peak wind speeds of

55.9m s21 in theNA, 52.9m s21 in the EP, and 59.6m s21

in the WP, which are all equivalent to the category 4

storms. If, on the other hand, the TC intensity is assessed

using the lifetimeminimum sea level pressure (SLP), the

resultant T1279 distributions show much better corre-

spondence to observations, particularly in the NA

(Fig. S2 in the supplemental material). (For the T639

and T319 models, the intensity distributions continue to

be too narrow and skewed toward the lowest in-

tensities.) These results are similar to the findings of

Chen and Lin (2013) and suggest a possibility of storm

category forecasting with the T1279 Minerva system

using an SLP-based classification.

4. Seasonal forecasts of the basinwide TC activity

Over the period 1980–2011, Minerva demonstrates

somewhat modest but significant skill in predicting the

interannual variability of the seasonal mean TC fre-

quency in all three basins (except for the NA in T319;

Table 3). The highest correlations are 0.51 in the NA

FIG. 3. As in Fig. 1, but for the WP.
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(T1279), 0.58 in the EP (T1279), and 0.52 in the WP

(T319). The correlations for the ACE, which could po-

tentially capture more of the climate influence and be

less sensitive to the details of the TC identification, show

much higher values reaching 0.64 in the NA (T639), 0.72

in the EP (T319), and 0.76 in the WP (T639). (The

sensitivity of the forecast skill to atmospheric resolution

is addressed later in section 4c.) Although a multimodel

ensemble (MME) approach can be quite successful in

improving the prediction of TCs (Vitart 2006; Vitart

et al. 2007), it does not lead to more skillful forecasts in

our study. The Minerva MME-based scores do not

generally exceed the best individual model’s score (not

shown). This could be an indication that merely chang-

ing the atmospheric horizontal resolution based on a

single model may not produce a sufficiently diverse en-

semble where model biases cancel each other.

To get more insight into the above results, we

recomputed correlations for the individual subperiods:

1980–89, 1990–99, and 2000–11 (Table 4). Minerva

hindcasts exhibit significant variations in the level of

skill from one decade to another. Correlations can reach

values as high as 0.83 for the TC frequency (2000–11;

T639) and 0.92 for the ACE (1990s; T1279) in the NA;

0.83 for the TC frequency and 0.86 for the ACE (both

1990s; T319) in the EP; and 0.75 for the TC frequency

(2000–11; T319) and 0.87 for the ACE (1990s; T639) in

the WP. But more importantly, in the 1980s correlations

for both measures of the TC activity for all models and

basins are low and mainly insignificant, and particularly

so in the NA. This may be related to the fact that before

1989, ORA-S4 (see section 2a) uses ERA-40 fluxes as

opposed to ERA-Interim, where the latter are found to

improve the mean state and interannual variability of

ocean fields, especially in the NA (Molteni et al. 2011).

The influence of certain climate factors (e.g., West

African precipitation, NorthAtlanticOscillation) on the

seasonal NA TC activity is known to vary depending on

whether the background climate conditions are more or

less favorable for cyclogenesis and development (Fink

et al. 2010; Caron et al. 2015). It is possible that the

Minerva forecasting system captures some interactions

but not others or does not reproduce their timing, which

may also contribute to the low skill in the NA during the

inactive period of the 1980s. The analysis of the pre-

dictability of these influences has not been done, which

is beyond the scope of the current paper. It is notewor-

thy that because of the poor skill in the NA in the 1980s,

correlations for the rest of the period 1990–2011 im-

prove substantially compared to the full 32-yr record

and reach 0.73, 0.73, and 0.63 for the TC frequency and

0.74, 0.78, and 0.66 for theACE for the T1279, T639, and

T319 model, respectively (cf. Table 3). The forecast skill

in the EP andWP improves as well but overall to a lesser

extent (not shown).

Accuracy, or a small difference between the ensemble

mean forecast and observation, which is another mea-

sure of skill, is shown by the root-mean-square error

(RMSE; Table 5). RMSE is computed after model data

are calibrated using historical data: simulated TC fre-

quency and ACE for each ensemble member are scaled

by the ratio of the observed and predicted ensemble-

mean values for the period 1980–2011, without cross

validation (Table 2). Such calibration removes system-

atic bias in the simulated ensemble-mean quantities.

RMSE values for the TC frequency and ACE are rather

large, especially in the NA and EP, compared to their

climatological means (Table 2) and other forecasting

models and methods (e.g., Vitart 2006; Zhao et al. 2010;

Vecchi et al. 2011). In the EP, this is related to the fact

that predicted year-to-year variations are rather weak,

TABLE 3. Linear correlation coefficients between the ensemble

mean predicted and observed (IBTrACS) TC frequency and ACE

for MJJASON of 1980–2011. Correlation coefficient values for the

detrended time series are given in parentheses. Boldface values

indicate that correlation coefficients are statistically significant at

the 95% confidence level using a one-sided Student’s t test and

taking into account serial correlation in the time series using

Bretherton et al. (1999) formula for effective sample size of order 2.

NA EP WP

TC frequency

T1279 0.51 (0.48) 0.58 (0.45) 0.44
T639 0.48 (0.57) 0.52 (0.38) 0.46

T319 0.28 (0.34) 0.56 (0.42) 0.52

ACE

T1279 0.61 (0.59) 0.70 (0.64) 0.72

T639 0.64 (0.69) 0.71 (0.65) 0.76

T319 0.48 (0.50) 0.72 (0.66) 0.68

TABLE 4. Linear correlation coefficients between the ensemble

mean predicted and observed (IBTrACS) TC frequency and ACE

for MJJASON of 1980–89 (P1), 1990–99 (P2), and 2000–11 (P3).

Boldface values indicate that correlation coefficients are statisti-

cally significant at the 95% confidence level using a one-sided

Student’s t test and taking into account serial correlation in the time

series using Bretherton et al. (1999) formula for effective sample

size of order 2.

NA EP WP

P1 P2 P3 P1 P2 P3 P1 P2 P3

TC frequency

T1279 20.19 0.66 0.73 0.39 0.73 0.62 0.40 0.49 0.56

T639 20.19 0.77 0.83 0.46 0.75 0.12 0.22 0.64 0.70

T319 20.25 0.40 0.67 0.27 0.83 0.46 0.31 0.72 0.75

ACE

T1279 0.11 0.92 0.56 0.53 0.81 0.29 0.61 0.81 0.69
T639 0.34 0.90 0.62 0.46 0.81 0.24 0.50 0.87 0.84

T319 0.13 0.82 0.54 0.48 0.86 0.23 0.47 0.81 0.70
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althoughmultiyear variability is captured quite well (see

section 4b). In the NA, the opposite is true, and high

RMSE values are related to the absence of a positive

trend in these twometrics over the studied period, which

is a distinct model bias further discussed in section 4a. In

all basins, RMSE appears to be larger for the lowest-

resolution model (T319), and more so for the ACE than

the TC frequency.

The quality of forecasts can also be assessed using a

skill score based on the RMSE and called the root-

mean-square skill score (RMSSS). It measures the

relative improvement of the forecast over some

benchmark (usually low skilled) forecast like clima-

tology. RMSSS is defined as one minus the ratio of the

RMSE of the forecasts to the RMSE of the ‘‘forecasts’’

of climatology (WMO 2002). Minerva hindcasts of the

TC frequency and the ACE show positive RMSSS

values indicating potential improvement over a clima-

tological hindcast (Table 6). The scores are rather

modest for the TC frequency but show overall higher

values for the ACE.

The skill of ensemble forecasts is also assessed using

probabilistic diagnostics, which incorporate information

about the ensemble distribution. One such measure is

statistical reliability (or consistency). It estimates the

degree to which forecast probabilities match the ob-

served frequencies and can be represented by the ratio

of the ensemble spread (averaged over all forecast

years) to the RMSE (SPRvERR; e.g., Buizza et al.

2005). In a perfectly reliable ensemble forecast, the

forecast uncertainty is fully accounted for, and the

SPRvERR is equal to one. Minerva retrospective fore-

casts of the TC frequency can be considered as highly

reliable (after calibration), except in the NA (Table 7).

The hindcasts of the ACE are more underdispersed (or

overconfident), but less so in the WP at the highest

resolutions. The SPRvERR for the ACE also exhibits

sensitivity to model resolution where the T319 hindcasts

are less reliable than the T639 and T1279. This is due

both to relatively larger RMSE and narrower ensemble

spread (not shown).

a. North Atlantic

The retrospective skill in the NATC frequency and the

ACE is further illustrated in Fig. 4 using the T1279 re-

sults. In this basin, Minerva captures interannual varia-

tions quite well (particularly after 1990) but fails to

reproduce multidecadal-scale changes: generally low ac-

tivity before about 1994 and much higher activity there-

after (e.g., Goldenberg et al. 2001). This bias is a feature

of theMinerva system and is also present in the T319 and

T639 models for both measures of the TC activity (not

shown). It may be partly responsible for the relatively low

skill in this basin. Indeed, correlation scores computed for

the detrended time series are generally higher (Table 3).

The RMSE drops significantly and becomes comparable

to the other studies cited above (Table 5). RMSSS and

reliability also improve where SPRvERR exceeds 0.9 for

the TC frequency (Tables 6 and 7).

The seasonal NA TC activity is modulated by local

changes in the SST, SLP, and VWS, among other factors

(e.g., Landsea 2000), and remote climate variations such

as ENSO (e.g., Camargo et al. 2010 and references

therein). Relative SST index (SST-REL) defined as the

difference between SST in the NAMDR and that in the

TABLE 5. RMSE between the calibrated ensemble mean pre-

dicted and observed (IBTrACS) TC frequency and ACE for

MJJASON of 1980–2011 (see text for more detail). RMSE values

for the detrended time series are given in the parentheses.

NA EP WP

TC frequency

T1279 3.5 (2.9) 3.6 (3.6) 3.4

T639 3.6 (2.7) 3.8 (3.7) 3.4

T319 3.9 (3.1) 3.7 (3.6) 3.3

ACE (104 kt2)

T1279 42.4 (38.2) 43.2 (42.7) 45.2

T639 41.6 (35.2) 43.8 (42.9) 43.2

T319 47.3 (41.5) 45.0 (43.8) 47.9

TABLE 6. RMSSS for the TC frequency and the ACE for

MJJASON of 1980–2011 (see text for more detail). RMSSS values

for the detrended time series are given in the parentheses.

NA EP WP

TC frequency

T1279 0.14 (0.12) 0.19 (0.11) 0.10

T639 0.12 (0.18) 0.14 (0.07) 0.11

T319 0.04 (0.06) 0.16 (0.09) 0.14

ACE

T1279 0.19 (0.19) 0.24 (0.19) 0.28

T639 0.21 (0.25) 0.23 (0.19) 0.31

T319 0.10 (0.12) 0.21 (0.17) 0.24

TABLE 7. The SPRvERR for the TC frequency and the ACE for

MJJASON of 1980–2011. SPRvERR values for the detrended time

series are given in parentheses.

NA EP WP

TC frequency

T1279 0.77 (0.90) 1.1 (1.0) 1.0

T639 0.74 (0.95) 1.0 (1.0) 1.1

T319 0.79 (0.96) 1.1 (1.1) 1.1

ACE

T1279 0.75 (0.79) 0.83 (0.82) 0.92

T639 0.77 (0.88) 0.80 (0.80) 0.93

T319 0.67 (0.74) 0.71 (0.71) 0.73

1 FEBRUARY 2016 MANGANELLO ET AL . 1187

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/15/21 12:16 PM UTC



global tropics (308S–308N) has also been used to skill-

fully predict seasonal NA hurricane activity (e.g., Zhao

et al. 2010; Vecchi et al. 2011). Minerva hindcasts of the

NA TC frequency and the ACE display realistic corre-

lations with several large-scale climatic indices, with the

exception of the VWS averaged over the MDR (VWS-

MDR), which by itself could explain as much as 75%–

80% of the variability in both metrics (Table 8). Cor-

relations with the SST-REL [and SST averaged over

the tropical Pacific (SST-PAC)] are also stronger. The

seasonal hindcast skill of the SST-based indices is very

high inMinerva where all correlations exceed 0.8 [Table

9; see also Zhu et al. (2015) for more detail on ENSO

skill], whereas it is lower for VWS-MDR and SLP av-

eraged over the basin’s respective MDR (SLP-MDR;

Table 9). VWS-MDR is known to respond to local as

well as remote SST changes, where it has a tendency to

diminish as a result of local warming (Knaff 1997) and

increase because of the warming of the tropical Pacific

and the tropical Indian Ocean (Goldenberg and Shapiro

FIG. 4. Retrospective forecasts of the NA MJJASON (a) TC frequency and (b) ACE for

1980–2011. In both panels, red lines show the observed time series and black lines show the

calibrated ensemble-mean forecasts using T1279 (see text for more details). Black dots denote

calibrated forecasts from the individual ensemble members. Box-and-whisker plots delineate

the 25th–75th and 10th–90th percentile ranges, respectively. Correlation coefficients between

the observed time series and ensemble-mean forecasts are shown in the top-right corner of

each panel.
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1996; Latif et al. 2007). Therefore, the net response of

the VWS-MDR in the model would depend on the re-

alism of the atmospheric teleconnections within the

global tropics. Multiple regression analysis of the VWS-

MDR onto the SST averaged over the basin’s respective

MDR (SST-MDR) and SST-PAC (see Table S1 in the

supplemental material) implies a stronger control of the

tropical Pacific over the NA VWS-MDR variability and

in turn the variability of the NA TC frequency and the

ACE in Minerva hindcasts. Geographically, the largest

differences occur over the eastern MDR (not shown),

which is one of the main cyclogenesis regions. The

tropical Pacific also has a stronger influence over the

simulated SLP variability in the tropical and subtropical

NA (not shown). Further analysis of this issue is beyond

the scope of the present study. We only note that these

VWS errors are not present in the T1279 results from

Project Athena (Kinter et al. 2013; the hindcast and

AMIP-style integrations with an earlier cycle of the IFS

forced by the observed records of SST and sea ice, not

shown), which strongly points to Minerva coupled

model biases as the source.

Errors in the representation of tropical heating and/or

atmospheric teleconnections may also affect the realism

of longer-time-scale variability, such as multidecadal

trends. In contrast to ERA-Interim, Minerva hindcasts

of the VWS-MDR, SLP-MDR, and SST-REL have in-

significant trends, similar to the NA TC frequency and

the ACE (Table S2 in the supplemental material; see

also Manganello et al. 2014b). Since simulated trends in

the SST-MDR are quite realistic, particularly for T1279

(Table S2), these errors could in part be because of a

stronger influence of the tropical Pacific variability that

acts to offset multidecadal changes intrinsic to the

tropical NA. The increase in theNATCactivity over the

past few decades has also been linked with the down-

ward trends in TC outflow temperature associated with a

cooling tropical tropopause layer (Emanuel et al. 2013),

or rather with upper tropospheric (UT; 300–150 hPa)

temperature trends according to Vecchi et al. (2013). Tem-

perature trends in Minerva hindcasts over the NAMDR

tend to be positive in the UT and insignificant at the 100-

and 50-hPa levels (not shown), which could further limit

the realism of the TC activity trends in this basin.

b. North Pacific

In contrast to the NA, multiyear variability is well

captured in the EP, while year-to-year variations are

rather weak (Fig. 5). Detrending the TC frequency and

the ACE often leads to lower hindcast skill in this basin

TABLE 8. Linear correlation coefficients between the large-scale climatic indices and the TC frequency (top row) and the ACE (bottom

row) forMJJASONof 1980–2011.Model correlations are based on the ensemble-mean values. Observed correlations (OBS) are between

the IBTrACS TC frequency and the ACE and the climatic indices based on the ERA-Interim data. The indices are 1) SST-MDR [7.58–
22.58N, 808–208W in the NA; 7.58–158N, 1608–808W in the EP (Zhao et al. 2010); and 108–208N, 1308–1608E in theWP]; 2) SST-PAC (308S–
308N, 1208E–808W, where NA SSTs are masked out); 3) SST-REL (see Zhao et al. 2010, Vecchi et al. 2011); 4) the Niño-3.4 index (58S–
58N, 1208–1708W); 5) EIO SSTAs averaged over 108S–22.58N, 758–1008E (Zhan et al. 2011); 6) SSTGdefined as the difference between the

SST averaged over 408–208S, 1608E–1708W and 08–168N, 1258–1658E (Zhan et al. 2013; SSTG here is averaged over May–July); 7) VWS-

MDR; and 8) SLP-MDR. Boldface values indicate that correlation coefficients are statistically significant at the 95% confidence level

using a one-sided Student’s t test and taking into account serial correlation in the time series using Bretherton et al. (1999) formula for

effective sample size of order 2. Model correlations that are significantly different from their observed values using Fisher’s Z statistic are

marked with an asterisk.

North Atlantic Eastern North Pacific Western North Pacific

OBS T1279 T639 T319 OBS T1279 T639 T319 OBS T1279 T639 T319

SST-REL 0.65 0.87* 0.86* 0.75 0.63 0.58 0.53 0.72 — — — —

0.67 0.75 0.82 0.86 0.58 0.63 0.54 0.64

SST-MDR 0.61 0.65 0.65 0.57 — — — — — — — —

0.62 0.50 0.54 0.60
SST-PAC 20.18 20.39 20.36 20.26 — — — — — — — —

20.16 20.53 20.55 20.51

Niño-3.4 20.42 20.52 20.40 20.20 0.43 0.39 0.13 0.37 0.27 0.30 0.30 0.33

20.48 20.64 20.61 20.56 0.32 0.48 0.33 0.39 0.73 0.68 0.61 0.60
EIO SSTA — — — — — — — — 20.54 20.64 20.38 20.65

20.28 20.38 20.26 20.46

SSTG — — — — — — — — 20.60 20.51 20.52 20.59

20.65 20.63 20.61 20.68
VWS-MDR 20.65 20.90* 20.87* 20.74 20.48 20.62 20.50 20.74 20.42 20.44 20.17 20.62

20.70 20.86 20.90* 20.90* 20.43 20.64 20.55 20.64 20.33 20.39 20.09 20.52

SLP-MDR 20.68 20.72 20.76 20.68 20.64 20.63 20.41 20.59 20.58 20.74 20.77 20.84*

20.56 20.67 20.73 20.79 20.48 20.69 20.53 20.57 20.54 20.74 20.75 20.81
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(Tables 3 and 5–7). The historical forecasts of the WP

TC activity are overall quite skillful both on interannual

and decadal time scales (Fig. 6). There are only a few

years markedly outside the 10th–90th percentile range

in this basin (1984 and 1990 for the TC frequency; and

1987, 1991, 1999, and 2011 for the ACE).

The seasonal EP TC activity is also influenced by the

variability in the large-scale environmental variables, such

as SST-REL, VWS, and SLP, which is partly related to

ENSO (e.g., Camargo et al. 2010; Zhao et al. 2010). The

observed correlations of the EP TC frequency and the

ACE with the corresponding climatic indices are quite

well reproduced in Minerva, with the exception of per-

haps EP VWS-MDR, which has somewhat lower corre-

lations (Table 8). In addition, the hindcast skill of theseEP

indices is quite high and exceeds the skill of the respective

NA indices (Table 9), although the variance of the EP

VWS-MDR is significantly lower than in the reanalysis

(not shown). It is noteworthy that the EP and NA TC

activity hindcasts vary out of phase, which is quite similar

to the observations (Wang and Lee 2009): correlations for

the full period of 1980–2011 are 20.55, 20.56, 20.32,

and20.50 for the TC frequency and20.61,20.62,20.43,

and 20.55 for the ACE from IBTrACS and T1279,

T639, and T319 models, respectively. (All the above cor-

relations are statistically significant, except for the TC

frequency in the T639 model.)

Interannual variations of the WP TC activity are

largely determined by changes in the location and

strength of the monsoon trough (e.g., Chen et al. 1998,

and references therein). ENSOhas a dominant influence

on the interannual variability of the monsoon trough as

well as VWS and thermodynamic conditions in the re-

gion (e.g., Camargo et al. 2010, and references therein;

Wu et al. 2012), which leads to mostly southeast-to-

northwest shifts in the TC genesis reflected in the low

correlation between the TC frequency and the Niño-3.4
index. On the other hand, the influence of ENSO on the

TC intensity and lifetime is much larger (Wang and

Chan 2002; Camargo and Sobel 2005), resulting in a high

correlation between the ACE and the Niño-3.4 index.

These contrasting effects of the ENSO influence are well

reproduced in Minerva, including the correlations with

theWPVWS-MDR and, to a lesser extent, theWP SLP-

MDR (Table 8). Zhan et al. (2011) have demonstrated

that SSTAs in the east Indian Ocean (EIO) are an ad-

ditional factor that modulate seasonal WP TC activity.

In contrast with ENSO, EIO SSTAs significantly affect

the basinwide TC frequency but have weaker influence

on the intensity and subsequently ACE. Minerva hind-

casts also seem to capture these differences (Table 8),

which is in contrast with the results of Chen and Lin

(2013), who found no significant statistical relation be-

tween EIO indices and model-predicted storms in this

basin. Recently, Zhan et al. (2013) discovered that the

spring SST gradient (SSTG) between the southwestern

Pacific and the western Pacific warm pool is significantly

anticorrelated with the WP TC frequency and an in-

tegral measure of the WP TC activity during the ty-

phoon season. Minerva reproduces these observed

correlations as well (Table 8), suggesting that both the

atmospheric response to the evolving SSTA, ocean–

atmosphere interactions and regional teleconnections in

the model have some fidelity in this basin. The hindcast

skill of the WP MDR indices, the EIO SSTAs, and the

SSTG in Minerva is also fairly high (Table 9).

In conclusion,wenote that, based on the above analysis,

we do not find any systematic differences associated with

resolution of either the prediction skill of the climatic in-

dices relevant to the TC activity or their relationship with

the basinwide TC activity measures such as TC frequency

or the ACE in any of the basins examined.

c. Sensitivity of the correlation skill to the ensemble
size and the atmospheric resolution

Here, we examine the influence of the ensemble size

on the correlation skill of the TC frequency and the

ACE hindcasts to identify the ‘‘optimum’’ size of the

TABLE 9. Correlation coefficients between the simulated and observed large-scale climatic indices in Table 8. Boldface indicates that

values are statistically significant at the 95% confidence level using a one-sided Student’s t test and taking into account serial correlation in

the time series using the Bretherton et al. (1999) formula for effective sample size of order 2.

North Atlantic Eastern North Pacific Western North Pacific

T1279 T639 T319 T1279 T639 T319 T1279 T639 T319

SST-REL 0.84 0.83 0.83 0.93 0.90 0.92 — — —

SST-MDR 0.86 0.86 0.86 — — — — — —

SST-PAC 0.83 0.81 0.82 — — — — — —

Niño-3.4 0.88 0.87 0.87 0.88 0.87 0.87 0.88 0.87 0.87

EIO SSTA — — — — — — 0.81 0.77 0.76
SSTG — — — — — — 0.85 0.81 0.83

VWS-MDR 0.71 0.70 0.73 0.84 0.81 0.83 0.52 0.45 0.55

SLP-MDR 0.54 0.55 0.51 0.82 0.83 0.86 0.76 0.79 0.80
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ensemble and to rigorously evaluate the sensitivity of

the correlation skill to the atmospheric horizontal res-

olution using identical ensemble sizes and taking into

account uncertainty due to sampling. Figure 7 shows the

mean values of the correlation coefficients as a function

of the ensemble size for the TC frequency and the ACE.

Also shown are the error bars that span the range within

plus or minus one standard deviation of the mean. The

associated uncertainty is partly due to sampling different

combinations of the ensemble members and also due to

randomly choosing a specific combination at each time

in the record, as there is no connection between partic-

ular ensemble members from one season to another.

Figure 7 demonstrates that the fastest growth in skill

occurs when the ensemble size increases from 1 to 5

members. The change in skill is still marked when the

size of the ensemble is further increased to 15members

but occurs at a slower rate. Beyond that, the scores

increase much more slowly than the extrapolation of

the 15-member ensemble results would suggest (not

shown) and saturate when the number of ensemble

members reaches about 25–30. Coincidentally, a sim-

ilar size of the ensemble (20–30 members) is recom-

mended in operational hurricane forecasting to

provide adequate estimates of the uncertainty (Gall

et al. 2013).

Taking into account the uncertainty estimates and

comparing ensembles of the same size, our results sug-

gest that the degree to which atmospheric horizontal

resolution affects correlation skill differs among the

FIG. 5. As in Fig. 4, but for the EP.
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basins. This influence also depends on the measure of

the TC activity and is more evident for the ACE (where

an increase in scores at higher resolutions is present in

all three basins) than the TC frequency. In the NA, the

impact of the resolution is most pronounced, and

the T1279 and T639 scores are considerably higher than

the T319 both for the TC frequency and the ACE

(Figs. 7a,d), although the differences between the

highest two resolutions are rather small. In the EP, the

increase in correlation appears statistically significant

only for T1279 in the case of the TC frequency and T639

for theACE (Figs. 7b,e). TheWP is the only basin where

the correlation skill of the TC frequency hindcasts is not

sensitive to model resolution (Fig. 7c). The ACE skill

scores, however, do increase with the resolution but are

somewhat higher for the T639model compared to T1279

(Fig. 7f).

5. Seasonal forecasts of the regional TC activity

Skillful seasonal forecasts of TC activity on subbasin

or regional scales could significantly enhance the utility

of such predictions (Vecchi and Villarini 2014). High-

resolution dynamical models are regarded as one of the

tools best suited for this purpose (e.g., Vecchi et al.

2014). It is therefore of interest to evaluate the perfor-

mance of Minerva hindcasts in this respect.

Retrospective skill of regional TC forecasts is

assessed here by means of Spearman rank correlation

between the seasonal mean observed and predicted (all

FIG. 6. As in Fig. 4, but for the WP.
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ensemble members) track densities (Fig. 8) similar to

Vecchi et al. (2014, their Fig. 11). [We define track

densities as number densities per season per unit area

equivalent to a 58 spherical cap, which differs from the

TC density definition used in Vecchi et al. (2014)].

Using this metric, significant skill in the NA is achieved

mainly in the MDR and midlatitudes (Figs. 8a–c). The

former region is important as many intense hurricanes

with frequent landfall along the U.S. and Canadian

coasts form and develop there (e.g., Kossin et al. 2010).

Significant correlations are also present over the

western Caribbean Sea (T639, Fig. 8b), part of the Gulf

of Mexico (T1279, Fig. 8a), and along the U.S. mid-

Atlantic seaboard (T1279, Fig. 8a). It is curious that

only the T1279 model shows a fairly large area of sig-

nificant skill in the immediate vicinity of the U.S. At-

lantic coast, whereas in the coarser-resolution models

this region is shifted to the northeast and is primarily

over open waters (Figs. 8b,c). We suspect that this im-

provement is partly due to a more realistic relationship

of the track density variations with ENSO in this model,

as discussed below.

In the EP, significant correlations are found in the

central part of the basin (Figs. 8d–f). There are addi-

tional broad regions of skill in the vicinity of the Central

American coast and near Hawaii, only in the T1279

hindcasts (Fig. 8d). On the other hand, correlations near

the Pacific coast of North America are insignificant or

even negative. Since the TC activity in this part of the

domain is strongly modulated by the Madden–Julian

oscillation (MJO; Camargo et al. 2008), this result is

consistent with the limited skill of current forecasting

systems in predicting the MJO (about 25 days in Mi-

nerva). Overall, the fraction of the EP TC region ex-

hibiting skill appears to increase with the model

resolution, particularly in transition fromT639 to T1279.

The WP demonstrates the highest correlations among

all the basins, which are largely confined to the southeast

(Figs. 8g–i) and are hence indicative of the strong foot-

print of ENSO (see below). In contrast with the EP,

FIG. 7. Retrospective linear correlations between the MJJASON observed (IBTrACS) and predicted TC frequencies for 1980–2011 as

a function of the ensemble size. Results are shown for the (a) NA, (b) EP, and (c) WP for T1279 (red), T639 (blue), and T319 (green).

(d)–(f)As in (a)–(c), but for theACE.Dots indicatemean values of the correlation coefficients, and error barsmark the range fromplus to

minus one standard deviation from the mean (see text for more details).
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higher resolution does not lead to improved skill here.

Regrettably, there is practically no skill over the land-

adjacent areas in this basin.

The skill of track density forecasts depends on the

overall quality of the track climatologies, the skill of the

basinwide TC frequency forecasts (Mei et al. 2014), and

the fidelity of the relationship between track density

variations and the large-scale modes of climate vari-

ability that are potentially predictable on seasonal time

scales (Vecchi et al. 2014, and references therein). The

latter is examined here in detail with respect to ENSO.

In the observations, El Niño (LaNiña) is associated with
below-normal (above-normal) track density almost ev-

erywhere in the NA, but mostly in the MDR and the

Gulf of Mexico (Fig. 9a; see also Mei et al. 2014). While

Minerva hindcasts show similar correlation patterns,

there are noteworthy differences (Figs. 9b–d). The area

of significant correlations is much larger in the model.

Correlations are also too strong in the eastern MDR,

more so at coarser resolutions. This is consistent with

our analysis of the VWS-MDR (and SLP-MDR) vari-

ability in section 4a. Results with the T1279 model are

overall the most realistic, taking into account theGulf of

Mexico, Caribbean Sea, and the central North Atlantic

(Fig. 9b). At coarser resolutions, there is an increasingly

strong relationship between track density along the

eastern seaboard and ENSO, not found in the observa-

tions (Figs. 9c,d).

The observed EP track density exhibits a westward

shift in response to ENSO (Fig. 9e; Camargo et al. 2008).

While this change is generally captured in Minerva, the

bulk of the track density increase occurs along the

FIG. 8. Retrospective rank correlation between the MJJASON observed (IBTrACS) and predicted TC track densities as number

densities per season per unit area equivalent to a 58 spherical cap for 1990–2011. Tracks from all ensemble members are used to compute

seasonal mean predicted track densities. Results shown are for the (a)–(c) NA, (d)–(f) EP, and (g)–(i) WP for the (top) T1279, (middle)

T639, and (bottom) T319Minerva models. Color shading denotes values statistically significant at a two-sided p5 0.1 level. Gray shading

indicates the regions where the observed track density is nonzero for at least 25% of the years.
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southern margin (less so in the T1279 model) and in the

western part of the domain (Figs. 9f–h). Predictability in

the central EP reflected in Figs. 8d–f could partly stem

from high correlations of track density with the EP SST-

REL over this region (not shown). ENSO also has a

strong impact on the WP track density, with a dis-

placement to the southeast and more northeastward

recurving tracks in El Niño years, and a shift to the

northwest and largely straight tracks with landfalls in

Southeast Asia during La Niña years (Fig. 9i; Camargo

et al. 2007). All Minerva hindcasts reproduce these

changes quite well, except that negative correlations in

the South China Sea are too strong in the model

(Figs. 9j–l). Positive correlations extending into the

FIG. 9. Rank correlation between the MJJASON Niño-3.4 index and TC track densities as number densities per season per unit area

equivalent to a 58 spherical cap for 1980–2011. Tracks from all ensemble members are used to compute seasonal mean predicted track

densities. Results shown are for the (left) NA, (center) EP, and (right) WP for the (a),(e),(i) IBTrACS data; (b),(f),(j) T1279;

(c),(g),(k)T639; and (d),(h),(l) T319Minervamodels. In (a), (e), and (i), the rank correlation ismasked at the p5 0.2 level; nonsignificant values

are shown by contours. Gray shading denotes the regions where the observed track density is nonzero for at least 25% of the years. In the

remaining panels, the rank correlation is masked at the p5 0.1 level, and gray shading indicates the regions where the predicted track density is

above a specified threshold for at least 25% of the years.
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central Pacific are likely due to many simulated WP

storms originating there (see Fig. 3), although tracking

simulated storms through the earlier stages of the life

cycle could also contribute to this result.

The ability to combine subbasin information with the

seasonal TC intensity forecasts would enhance the

value of regional TC activity predictions even further.

This is a more challenging goal, since the outcome

would be highly dependent on the skill of the regional

track density (or a similar metric) forecasts discussed

above. In addition, changes in storm intensity are

driven by the ambient environmental conditions along

the tracks (which can be modulated by broader-scale

regional or remote modes of variability) as well as in-

ternal processes (e.g., Wang and Wu 2004). For these

reasons, the following evaluation of the regional TC

intensity hindcasts should be regarded as mostly

exploratory.

Figure 10 shows the retrospective skill of regional TC

intensity forecasts assessed by means of Spearman rank

correlation between the seasonal mean observed and

predicted (all ensemble members) TC intensities ex-

pressed in terms of the 10-m wind speed and averaged

over the area equivalent to a 58 spherical cap. In the NA,

the area of significant skill is indeed rather limited and

covers parts of the central tropical Atlantic, eastern

Caribbean Sea, and off the southeastern coast of the

United States (T1279 and T639 models; Figs. 10a–c).

Over these regions, we also find significant correlations

of the mean intensity and the Niño-3.4 index both in

observations and hindcasts (not shown). In the EP,

contiguous areas of significant skill are larger andmainly

FIG. 10. Retrospective rank correlation between theMJJASONobserved (IBTrACS) and predicted TC intensities asmeasured by 10-m

wind speed and averaged over the area equivalent to a 58 spherical cap for 1990–2011. Tracks from all ensemble members are used to

compute seasonal mean predicted intensities. Results shown are for the (a)–(c) NA, (d)–(f) EP, and (g)–(i) WP for the (top) T1279,

(middle) T639, and (bottom) T319Minervamodels. Color shading denotes values statistically significant at a two-sided p5 0.1 level. Gray

shading indicates the regions where the observed track density is nonzero for at least 25% of the years.
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found in the central and western parts of the basin

(Figs. 10d–f). The WP also shows large areas of skill in

the southeastern part of the domain (Figs. 10g–i). In the

North Pacific, the locations of skillful intensity hindcasts

appear to be directly linked to the regions of skillful

track density hindcasts and could therefore be partly

influenced by ENSO (see also Camargo et al. 2007;

Camargo et al. 2008).

The above results show promise for regional intensity

forecasting. A better understanding of the link between

the regional track and intensity changes and other cli-

mate phenomena in addition to ENSO is needed. We

do not find a clear dependence of the regional inten-

sity hindcast skill (as defined above) on the model

resolution.

6. Summary and conclusions

This study evaluates the skill of retrospective forecasts

of the seasonal, basinwide, and regional tropical cyclone

(TC) activity in Minerva, an experimental coupled

prediction system integrated at high atmospheric reso-

lutions ranging from 62 to 16km. In the NA, the cli-

matology of TC counts is quite realistic, largely as a

result of the strong MDR genesis. At the highest reso-

lution, the frequency of intense storms is still inadequate

in all basins, except when intensity is assessed based on

the minimum SLP, particularly in the NA. The EP and

WP exhibit the familiar under- and overprediction of

TCs, respectively. The northwest bias in the WP cyclo-

genesis, the prevalence of central Pacific storms, and

relatively low intensities (compared to the NA) are

strongly suggestive of the influence of the cold SST bias

in the eastern equatorial Pacific.

Minerva demonstrates statistically significant skill in

hindcasts of the seasonal mean TC frequency and ACE

in all three basins, particularly for the period of 1990–

2011, possibly as a result of improved ocean initializa-

tion. While the skill scores tend to be lower for the TC

frequency, the ACE hindcasts are less reliable (under-

dispersed) except in the WP at the highest resolutions.

Our analysis also suggests that the NA skill scores could

be potentially much higher if it were not for an overly

strong influence of the tropical Pacific variability on the

NAMDR climate and the interannual and multidecadal

time scales. On the other hand, the effects of aerosols

and ozone, which are considered to be important drivers

of the tropical NA climate variability (e.g., Evan et al.

2009, 2011; Emanuel et al. 2013), are not adequately

represented inMinerva. The EP skill scores appear to be

limited by weak interannual variability in the EPMDR.

While our focus has been on the large-scale conditions,

the EP cyclogenesis is also driven by wind surges,

AEWs, topographic effects, and ITCZ breakdowns

(Camargo et al. 2010, and references therein). It is not

clear to what degree these processes are resolved in

Minerva and whether there is any predictability of the

statistics of these events on seasonal time scales. Some of

the highest scores are achieved in the WP, where Mi-

nerva demonstrates skill in simulating atmospheric re-

sponse to SSTA, ocean–atmosphere interactions, and

tropical teleconnections.

Higher atmospheric horizontal resolution improves

skill scores for the ACE and, to a lesser extent, the TC

frequency (where this effect is more basin specific), even

though the influence of large-scale climate variations on

these TC activity measures is largely independent of

resolution changes in Minerva. The biggest gain occurs

in transition from T319 to T639, while the differences

between the T639 and T1279 models are generally not

significant. This may indicate that the highest two reso-

lutions are still too coarse to permit a qualitative im-

provement in TC genesis, while fine enough to better

simulate intensification and intensity changes. Other

possibilities include a suppression of sensitivity to at-

mospheric resolution by the convective parameteriza-

tion or the relatively coarse ocean resolution.

Over broad areas of the NA and the North Pacific,

Minerva exhibits significant skill in regional TC fore-

casts measured by retrospective rank correlations be-

tween the observed and predicted track densities. While

most locations with skill are common to all resolutions,

there are additional regions in theNA andEP (including

land-adjacent areas) where significant correlations are

achieved mostly by the T1279 model. It follows that,

contrary to our resolution sensitivity analysis of the

basinwide TC occurrence, there are advantages of fur-

ther model refinement from 31 to 16 km for regional TC

activity forecasting. Some of this improvement appears

to stem from a more realistic relationship of the track

density variations with ENSO at the highest resolution.

Taking regional TC activity forecasting a step further,

we assessed the feasibility of regional TC intensity

forecasts. As expected, the areal coverage of significant

skill in these forecasts is more limited, particularly in the

NA, and does not show a clear dependence on themodel

resolution in contrast with the ACE forecasts. It is

possible that intensity variations become more realistic

at higher resolutions but do not occur in the same lo-

cations as in the observations.

A major source of predictability on seasonal time

scales is the state of ENSO and the skill of models to

predict ENSO is crucial for skillful prediction of TCs

(e.g., Landsea 2000; Vitart and Stockdale 2001). Based

on analyses by Zhu et al. (2015) and by us, we see that

skillful prediction of the timing, phase, andmagnitude of
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the ENSO-related SSTAs may not be sufficient for this

purpose. Rather, quality forecasts of the total SST dis-

tribution in the tropics, which determines the location

and strength of the heating sources and therefore the

response of the large-scale circulation, would be pre-

ferred. [The SSTA skill in Minerva is also relatively low

in the western equatorial Pacific, which is a key region

for generation of tropical teleconnections. A similar

error in System 4 has been connected to a bias in near-

equatorial winds in the western and central Pacific—

a dominant factor in driving the coupled SST bias

(Molteni et al. 2011).] The systematic model biases have

been shown to strongly reduce the skill of the basinwide

and regional TC activity forecasts in high-resolution

CGCMs (Vecchi et al. 2014). In light of this, benefits of

high resolution for seasonal TC activity forecasting, as

explored in the current work, may be underestimated.
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